A Lecture Series on DATA COMPRESSION

Lossy Compression — Transforms

Abdou Youssef (Speaker)

Anastase Nakassis (MDVTG Manager)

Motivation for Transforms

- Why transform the data
 - To decorrelate the data so that fast scalar (rather than slow vector) quantization can be used
 - To exploit better the characteristics of the human visual system (HVS) by separating the data into vision-sensitive parts and vision-insensitive parts
 - To compact most of the "energy" in a few coefficients, so that to discard most of the coefficients and thus achieve compression

Desirable Transforms

- Desirable Properties of transforms
 - Data Decorrelation, exploitation of HVS, and energy compaction
 - Data-Independence (same transform for all data)
 - Speed
 - Separability (for fast transform of multidimensional data)
- Various transforms achieve those properties to various extents
 - Fourier Transform
 - Discrete Cosine Transform (DCT)
 - Other Fourier-like transforms: Haar, Walsh, Hadamard
 - Wavelet transforms
- The Karhunen-Loeve Transform
 - Optimal w.r.t. data decorrelation and energy compaction
 - But it is data-dependent
 - And slow because the transform matrix has to be computed every time
 - Therefore, KL is only of theoretical interest to data compression

Different Perspectives of Transforms

- Statistical perspective
- Frequency perspective
- Vector space perspective
- End-use perspective (matrix formulation)

Matrix Formulation of Transforms

- Simply stated, a transform is a matrix multiplication of the input signal and the transform-matrix
- Each of the standard transforms mentioned earlier is defined by an $N \times N$ square non-singular matrix A_N
- Transform of a 1D discrete input signal (a column vector x of N components) is the computation of

$$y = A_N x$$

• Transform of an $N \times M$ image I is transform of each column followed by transform of each row. In matrix form, transform of image I is the computation of

$$J = A_N I A_M^t$$

• The inverse transform is simply $x = A_N^{-1}y$ for 1D signals, and $I = A_N^{-1}J(A_M^{-1})^t$ for images

Transform-Based Lossy Compression

- \bullet Compression of an image I:
 - 1. Transform I, yielding $J = A_N I A_M^t$
 - 2. Scalar-quantize J, yielding J'
 - 3. Losslessly compress J', yielding a bit stream B
- Image reconstruction
 - 1. Losslessly decompress B back to J'
 - 2. Dequantize J', yielding an approximation \hat{J} of J
 - 3. Inverse-transform \hat{J} , yielding a reconstructed image

$$\hat{I} = A_N^{-1} \hat{J} A_M^{-1t}.$$

Definition of The Matrices of the Standard Transforms

- Except for the case of the KL transform, the characterizing matrix A_N of each of the standard transforms is independent of the input, that is, A_N is the same for all 1D signals and images.
- In the following, the matrix A_N of each transform will be defined for arbitrary N, and then A_2 , A_4 and A_8 will be shown

The Matrix of the Fourier Transform

• The matrix $A_N = (a_{kl})$ for the Fourier Transform:

$$a_{kl} = \sqrt{\frac{1}{N}} e^{-\frac{2\pi i}{N}kl}, \quad for \ k, l = 0, 1, \dots, N-1$$

• Remark: $A_N^t = A_N = A_N^{-1}$

$$A_2 = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$A_4 = rac{1}{2} egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & -i & -1 & i \ 1 & -1 & 1 & -1 \ 1 & i & -1 & -i \end{pmatrix}$$

Let
$$a = \frac{\sqrt{2}}{2}(1+i)$$
 and $\overline{a} = \frac{\sqrt{2}}{2}(1-i)$

$$A_{8} = \sqrt{\frac{1}{8}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \overline{a} & -i & -a & -1 & -\overline{a} & i & a \\ 1 & -i & -1 & i & 1 & -i & -1 & i \\ 1 & -a & i & \overline{a} & -1 & a & -i & -\overline{a} \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & -\overline{a} & -i & a & -1 & \overline{a} & i & -a \\ 1 & -i & -1 & -i & 1 & i & -1 & -i \\ 1 & a & i & -\overline{a} & -1 & -a & -i & \overline{a} \end{bmatrix}$$

The Matrix of the Discrete Cosine Transform (DCT)

• The matrix $A_N = (a_{kl})$ for DCT:

$$a_{0l} = \sqrt{\frac{1}{N}}, \quad for \ l = 0, 1, \dots, N - 1$$

$$a_{kl} = \sqrt{\frac{2}{N}} cos \frac{(l + \frac{1}{2})k\pi}{N}, \quad for \ 1 \le k \le N - 1, 0 \le l \le N - 1$$

• Remark: $A_N^{-1} = A_N^t$

$$A_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ \sqrt{1 + \frac{\sqrt{2}}{2}} & \sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 + \frac{\sqrt{2}}{2}} \\ 1 & -1 & -1 & 1 \\ \sqrt{1 - \frac{\sqrt{2}}{2}} & -\sqrt{1 + \frac{\sqrt{2}}{2}} & \sqrt{1 + \frac{\sqrt{2}}{2}} & -\sqrt{1 - \frac{\sqrt{2}}{2}} \end{pmatrix}$$

The Matrix of the Hadamard Transform

• The matrix $A_N = (a_{kl})$ for the Hadamard Transform is defined recursively:

$$-A_{1} = (1)$$

$$-A_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} A_{\frac{N}{2}} & A_{\frac{N}{2}} \\ A_{\frac{N}{2}} & -A_{\frac{N}{2}} \end{bmatrix}$$

• Remark: $A_N^{-1} = A_N^t = A_N$

The Matrix of the Walsh Transform

- The matrix A_N of the Walsh Transform is derived from the Hadamard matrix by permuting the rows of the latter in a certain way
- Remark: $A_N^{-1} = A_N^t = A_N$

The Matrix of the Haar Transform

• The matrix $A_N = (a_{kl})$ for the Haar Transform, where $N = 2^n$:

$$-a_{0l} = \frac{1}{\sqrt{N}} \text{ for } l = 0, 1, \dots, N - 1$$

$$- \text{ for } k \ge 1, \ k = 2^p + q, \ 0 \le q \le 2^p - 1, \ 0 \le p \le n - 1$$

$$a_{kl} = \begin{cases} 2^{\frac{p-n}{2}} & \text{if } q2^{n-p} \le l < (q + \frac{1}{2})2^{n-p} \\ -2^{\frac{p-n}{2}} & \text{if } (q + \frac{1}{2})2^{n-p} \le l < (q + 1)2^{n-p} \end{cases}$$

$$0 & \text{otherwise}$$

• Remark: $A_N^{-1} = A_N^t$

$$A_2 = \sqrt{\frac{1}{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad A_4 = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ \sqrt{2} & -\sqrt{2} & 0 & 0 \\ 0 & 0 & \sqrt{2} & -\sqrt{2} \end{pmatrix}$$

Vector Space Perspective

- Analog signals are treated as an infinite-dimensional functional vector space
- Finite Discrete are signals treated as finite-dimensional vector spaces
- In either case, the vector space has a basis $\{e_k \mid k=0,1,...\}$
- A transform of a signal x is a linear decomposition of x along the basis $\{e_k\}$:
 - $-x = \sum_k y_k e_k$, where the $\{y_k\}$ are real/complex numbers
 - Transform: $x \longrightarrow (y_k)_k$
 - $-(y_k)_k$ is a representation of x
- Compression-related desirable properties of a vector-space basis
 - Correspondence with the human visual system
 - Specifically, only a very small number of basis vectors are relevant to (i.e., visible by) the HVS, while the majority of the basis vectors are invisible to the HVS
 - Uncorrelated decomposition-coefficients $(y_k)_k$

Relationship between the Vector Basis and the Matrix Formulation of Transforms

- ullet Consider finite 1D discrete signals of N components
 - They form an N-dimensional vector space \mathbb{R}^N
 - Any basis consists of N linearly independent column vectors $e_0, e_1, \ldots, e_{N-1}$
 - For any signal $x = (x_0 \ x_1 \ \dots x_{N-1})^t, \ x = \sum_{k=0}^{N-1} y_k e_k$

- That is,
$$\begin{pmatrix} x_0 \\ x_1 \\ \dots \\ x_{N-1} \end{pmatrix} = (e_0 \ e_1 \ \dots \ e_{N-1}) \begin{pmatrix} y_0 \\ y_1 \\ \dots \\ y_{N-1} \end{pmatrix}$$

- Equivalently, y = Ax, where the columns of A^{-1} are the basis column vectors $e_0, e_1, \ldots, e_{N-1}$

- Consider now $N \times M$ images
 - They form an NM-dimensional vector space $\mathbb{R}^{N\times M}$
 - Any basis consists of $N \times M$ matrices $\{E_{kl}\}$ of dimensions $N \times M$
 - Following the same analysis as above, a transform $I \longrightarrow J = A_N I A_M^t$ corresponds to basis $E_{kl} = (column \ k \ of \ A_N^{-1}).(column \ l \ of \ A_M^{-1})^t = e_k.e_l^t$ for k = 0, 1, ..., N-1 and l = 0, 1, ..., M-1
 - $-I = \sum_{k,l} J_{kl} E_{kl}$
- Remark: For analog signals, the vector space is infinitedimensional, and its basis is the infinite set of sine and cosine waves, to be addressed later

Visualization of DCT Basis Images

Fourier Transform

- \bullet Consider a function x(t) that is either
 - of finite support [0, T], or
 - periodic of period T
- Assume x(t) to be square-integrable over [0, T]
- Fourier series of x(t) is:

$$\sum_{k=0}^{\infty} a_k \cos \frac{2\pi}{T} kt + \sum_{k=0}^{\infty} b_k \sin \frac{2\pi}{T} kt, \text{ or }$$

• In (more elegant) complex form:

$$\sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}, \quad where \ y_k = \frac{1}{T} \int_0^T x(t) e^{-\frac{2\pi}{T}ikt} dt$$

• Fourier Transform: $x(t) \longrightarrow (y_k)_k$

• Theorem: For all natural signals,

$$-\frac{x(t_+)+x(t_-)}{2} = \sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}$$

- If x is continuous at t, $x(t) = \sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}$
- Therefore, x(t) is largely representable by $(y_k)_k$
- Theorem: $y_k \longrightarrow 0$ as $|k| \longrightarrow \infty$
- The representation $x(t) = \sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}$ is periodic of period T. Thus, even if x(t) is defined over [0,T] only, the Fourier series "periodizes" x(t)

Connection with The Human Visual System

- $e^{\frac{2\pi}{T}ikt}$ is periodic of period $\frac{T}{k}$; thus, its frequency is $\frac{k}{T}$
- \bullet The higher k, the higher the frequency
- In $x(t) = \sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}$, y_k is the k-th frequency content of x(t)
- Experiments have shown that
 - suppressing a y_k (along with y_{-k}) for any high frequency k causes HARDLY VISIBLE or NO VISIBLE change to x(t)
 - suppressing a y_k (along with y_{-k}) for some low frequency k causes VISIBLE changes to x(t)
- Thus, the HVS is sensitive to low-frequency data but insensitive to high-frequency data

Connection to Compression

("First Cut")

• Facts

$$-x(t) = \sum_{k=-\infty}^{\infty} y_k e^{\frac{2\pi}{T}ikt}$$
$$-y_k \longrightarrow 0 \text{ as } |k| \longrightarrow \infty$$

- $\hat{x}(t) = \sum_{k=-r}^{r} y_k e^{\frac{2\pi}{T}ikt}$ is a good mathematical and visual approximation of x(t)
- The faster the decay of y_k , the smaller r can be
- Thus, $(y_k)_{|k| \le r}$ is a very small representation of x (\hat{x} to be precise), leading to high compression

Treatment of Discrete Signals (Discrete Fourier Transform)

• Sample N values (x_l) of x(t) at N points $l\frac{T}{N}$, that is, $x_l = x(l\frac{T}{N})$ for l = 0, 1, ..., N - 1.

•
$$x_l = x(l\frac{T}{N}) = \sum_k y_k e^{\frac{2\pi}{T}ikl\frac{T}{N}} = \sum_k y_k e^{\frac{2\pi}{N}ikl}$$

• Since (x_l) is discrete and finite, there is no need to keep an infinity of y_k 's; rather, $y_0, y_1, ..., y_{N-1}$ are sufficient. That is,

$$x_{l} = \sum_{k=0}^{N-1} y_{k} e^{\frac{2\pi}{N}ikl}, \quad l = 0, 1, ..., N-1$$
$$y_{k} = \sum_{l=0}^{N-1} x_{k} e^{\frac{2\pi}{N}ikl}, \quad k = 0, 1, ..., N-1$$

- DFT: $(x_l)_l \longrightarrow (y_k)_k$
- Put in matrix form: $y = A_N x$, where $A_N = (e^{\frac{2\pi}{N}ikl})_{kl}$
- Again, for large k, y_k can be suppressed is broadly quantized

Why Use DCT rather than DFT (Boundary Problems of the Fourier Transforms)

- Discontinuities at the boundaries cause large high-frequency contents
- Eliminating those frequency contents cause boundary artifacts (known as Gibbs phenomenon, ringing, echoing, etc.)

• Consider the function

$$x(t) = \begin{cases} \frac{t}{T} & \text{if } 0 \leq t \leq \frac{T}{2} \\ (2\epsilon - 1)\frac{t}{T} - \epsilon + 1 & \text{if } \frac{T}{2} \leq t \leq T \\ 0 & \text{otherwise} \end{cases}$$

• Its Fourier series is:

$$x(t) = \frac{\epsilon + 1}{4} + \sum_{k \neq 0} \left[\frac{(1 - \epsilon)((-1)^k - 1)}{2(\pi k)^2} + \frac{\epsilon}{2\pi k} i \right] e^{\frac{2\pi i}{T}kt}$$

• Special case $\epsilon = 0$:

$$x(t) = \frac{1}{4} + \sum_{k \neq 0} \frac{(-1)^k - 1}{2(\pi k)^2} e^{\frac{2\pi i}{T}kt}$$

• Special case $\epsilon = 1$:

$$x(t) = \frac{1}{2} + \sum_{k \neq 0} \frac{i}{2\pi k} e^{\frac{2\pi i}{T}kt}$$

Relation of DCT to FFT

- Let (x_l) be an original signal, and (y_k) its DCT transform, l = 0, 1, ..., N 1
- Shuffle x to become almost symmetric; that is, create a new signal (x'_l) by taking the even-indexed terms followed by the reverse of the odd-indexed terms:

$$-x'_{l} = x_{2l}$$
 and $x'_{N-l-1} = x_{2l+1}$, for $0 \le l \le N/2 - 1$

- y' = DFT(x');
- $y_0 = \sqrt{\frac{1}{N}} Real(x'_0),$ and $y_k = \sqrt{\frac{2}{N}} Real(e^{\frac{-\pi k}{2N}} x'_k), k = 1, 2, ..., N - 1$

Quantization in DCT-based Compression

DCT vs. KL

- For most natural signals, the KL basis and the DCT basis are almost identical
- Therefore, DCT is near optimal (in decorrelation, energy compaction, and rme distortion) because KL is optimal
- Unlike KL, DCT is not signal-dependent
- Hence the popularity of DCT